Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.

Identifieur interne : 000D13 ( Main/Exploration ); précédent : 000D12; suivant : 000D14

Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.

Auteurs : Usha Srinivasan [États-Unis] ; Aveenash Bala ; Shu-Chuan Jao ; David W. Starke ; T William Jordan ; John J. Mieyal

Source :

RBID : pubmed:16846241

Descripteurs français

English descriptors

Abstract

Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.

DOI: 10.1021/bi060440o
PubMed: 16846241
PubMed Central: PMC3199604


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.</title>
<author>
<name sortKey="Srinivasan, Usha" sort="Srinivasan, Usha" uniqKey="Srinivasan U" first="Usha" last="Srinivasan">Usha Srinivasan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965</wicri:regionArea>
<wicri:noRegion>Ohio 44106-4965</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bala, Aveenash" sort="Bala, Aveenash" uniqKey="Bala A" first="Aveenash" last="Bala">Aveenash Bala</name>
</author>
<author>
<name sortKey="Jao, Shu Chuan" sort="Jao, Shu Chuan" uniqKey="Jao S" first="Shu-Chuan" last="Jao">Shu-Chuan Jao</name>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</author>
<author>
<name sortKey="Jordan, T William" sort="Jordan, T William" uniqKey="Jordan T" first="T William" last="Jordan">T William Jordan</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16846241</idno>
<idno type="pmid">16846241</idno>
<idno type="doi">10.1021/bi060440o</idno>
<idno type="pmc">PMC3199604</idno>
<idno type="wicri:Area/Main/Corpus">000D35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D35</idno>
<idno type="wicri:Area/Main/Curation">000D35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D35</idno>
<idno type="wicri:Area/Main/Exploration">000D35</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.</title>
<author>
<name sortKey="Srinivasan, Usha" sort="Srinivasan, Usha" uniqKey="Srinivasan U" first="Usha" last="Srinivasan">Usha Srinivasan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965</wicri:regionArea>
<wicri:noRegion>Ohio 44106-4965</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bala, Aveenash" sort="Bala, Aveenash" uniqKey="Bala A" first="Aveenash" last="Bala">Aveenash Bala</name>
</author>
<author>
<name sortKey="Jao, Shu Chuan" sort="Jao, Shu Chuan" uniqKey="Jao S" first="Shu-Chuan" last="Jao">Shu-Chuan Jao</name>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</author>
<author>
<name sortKey="Jordan, T William" sort="Jordan, T William" uniqKey="Jordan T" first="T William" last="Jordan">T William Jordan</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Disulfides (pharmacology)</term>
<term>Dithiothreitol (chemistry)</term>
<term>Gliotoxin (pharmacology)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Models, Chemical (MeSH)</term>
<term>Oxidoreductases (antagonists & inhibitors)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Piperazines (pharmacology)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (MeSH)</term>
<term>Sporidesmins (metabolism)</term>
<term>Sporidesmins (pharmacology)</term>
<term>Structure-Activity Relationship (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Disulfures (pharmacologie)</term>
<term>Dithiothréitol (composition chimique)</term>
<term>Gliotoxine (pharmacologie)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Oxidoreductases (antagonistes et inhibiteurs)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Pipérazines (pharmacologie)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Spectrométrie de masse MALDI (MeSH)</term>
<term>Sporidesmines (métabolisme)</term>
<term>Sporidesmines (pharmacologie)</term>
<term>Substitution d'acide aminé (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dithiothreitol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Sporidesmins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Disulfides</term>
<term>Gliotoxin</term>
<term>Piperazines</term>
<term>Sporidesmins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Dithiothréitol</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Sporidesmines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Disulfures</term>
<term>Gliotoxine</term>
<term>Pipérazines</term>
<term>Sporidesmines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Glutaredoxins</term>
<term>Models, Chemical</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Modèles chimiques</term>
<term>Relation structure-activité</term>
<term>Spectrométrie de masse MALDI</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16846241</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>45</Volume>
<Issue>29</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jul</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.</ArticleTitle>
<Pagination>
<MedlinePgn>8978-87</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Srinivasan</LastName>
<ForeName>Usha</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bala</LastName>
<ForeName>Aveenash</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jao</LastName>
<ForeName>Shu-chuan</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Starke</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jordan</LastName>
<ForeName>T William</ForeName>
<Initials>TW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AG015885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-AG 024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>A1 36219</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01-AG15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010879">Piperazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013173">Sporidesmins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>64474-15-3</RegistryNumber>
<NameOfSubstance UI="C003905">3,6-bis(5-chloro-2-piperidyl)-2,5-piperazinedione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>67-99-2</RegistryNumber>
<NameOfSubstance UI="D005912">Gliotoxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H70LC3H0RW</RegistryNumber>
<NameOfSubstance UI="C001873">sporidesmin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T8ID5YZU6Y</RegistryNumber>
<NameOfSubstance UI="D004229">Dithiothreitol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004229" MajorTopicYN="N">Dithiothreitol</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005912" MajorTopicYN="N">Gliotoxin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010879" MajorTopicYN="N">Piperazines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013173" MajorTopicYN="N">Sporidesmins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16846241</ArticleId>
<ArticleId IdType="doi">10.1021/bi060440o</ArticleId>
<ArticleId IdType="pmc">PMC3199604</ArticleId>
<ArticleId IdType="mid">NIHMS61214</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Res. 1994 Nov-Dec;21(6):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7834053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1994 Apr;310(1):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8161215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 May 10;319(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7771771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 23;374(1):25-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1996 Apr 1;183(4):1829-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8666939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Nov 1;335(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(3):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Pharmacol. 1996 Dec;27(8):1311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9304400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jul 24;280(4):687-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9677297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Oct 15;358(2):232-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1999;300:226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9919525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1962 Oct;237:3245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14033211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 18;275(33):25202-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2001 May;22(9):1785-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11425233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 30;277(35):31631-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12063251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2003 May 6;145(2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12686490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Oncol. 2004;21(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1987 Apr 15;36(8):1313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3593416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 1987 Feb;7(1):17-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3611593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1993;75(9):803-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8274532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1994 Feb;266(2 Pt 1):G247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8141298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1995 May 11;49(9):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bala, Aveenash" sort="Bala, Aveenash" uniqKey="Bala A" first="Aveenash" last="Bala">Aveenash Bala</name>
<name sortKey="Jao, Shu Chuan" sort="Jao, Shu Chuan" uniqKey="Jao S" first="Shu-Chuan" last="Jao">Shu-Chuan Jao</name>
<name sortKey="Jordan, T William" sort="Jordan, T William" uniqKey="Jordan T" first="T William" last="Jordan">T William Jordan</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Srinivasan, Usha" sort="Srinivasan, Usha" uniqKey="Srinivasan U" first="Usha" last="Srinivasan">Usha Srinivasan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16846241
   |texte=   Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16846241" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020